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ABSTRACT 

The shape of the gradient line of the ear th ' s  zonal gravitational 

potential is analyzed, and numerical results,  such a s  the radii  of 

curvature, the directional field, e t c . ,  a r e  derived f rom the zonal har -  

monic coefficients of Kozai and King-Hele. 



ON THE GRADIENT LINE O F  THE 

EARTH'S ZONAL GRAVITATIONAL  POTENTIAL^ 
2 W a l t e r  K6hnlein 

The gradient line of the earth 's  outer zonal gravitational potential 

satisfies identically the differential equation 

which has  rotational symrnetry i n  regard to the ear th 's  revolution axis, 

where U is the earth's outer zonal gravitational potential, s is the a r c  

length of the gradient line, increasing toward outer space, and $is the 

position vector, r e f e r r ed  to the m a s s  center of the earth; orientation 

of x , x , x is standard. 

coordinate system r ,+ in a random meridian plane o r ,  for  simplicity, 

t o  the meridian plane through Greenwich. 

tial equation can be written 

1 2 3  To integrate ( l ) ,  we t ransform ;to a polar 

In this case,  the differen- 

This work was supported in  par t  by Grant No. NsG 87 from the 
National Aeronautics and Space Administration. 

Geodesist, Smiths onian Astrophysical Observatory, Cambridge, 
Mass achus ett 6. 
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au . 1 - a+ 
r lg rad  Ul  

J 

or  

- d x l  - 
ds 

By comparison of the elements in the left-hand matr ices ,  the differ- 

ential equation transforms: 

- +  d r  1 a v = ,  , 
ds ]g rad  U l  a r  

1 a v = ,  . 
a+ 

*t 
ds r21gradUl  

(5) 

The a r c  length s only appears implicitly and hence a simplified version 

derives if we divide (4) by (5) :  

If we give the potential U in the form 



I -  

I .  

where GM is the gravitational constant X mass  of the earth,  a is the 

equatorial radius, J 

the Legendre’s polynomials, the above equation (6) is a function only of r 

and +, and can be integrated with the help of a special differential 

a r e  the zonal harmonic coefficients, and Pn a r e  n 

equation (Hobson, 

d q pn (sin $1 

1955): 

( n t 1 )  [ s i n +  P n ( s i n + )  - P n t l  (sin+)] = 0 (8) 1 -- 
cos + 

expressing the derivatives of P as  functions of P and P Equation 

(8) introduced in  (6) and integrated leads to the gradient line in question: 
n n n t  1 ’  

0’ $03 wherein C is an integration constant, depending on a point r 

through which the trajectory runs. 

(9) becomes zero for r + 00 and consequently 

The second t e r m  (infinite sum) in 

which means that the gradient curve cannot exceed a certain geocentric 

latitude. Obviously the geocentric radius r in the latitude T is  the asymp- 

tote to the gradient line through ro ,  9,. 
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1. GRADIENT LINE AND ASYMPTOTE 

In Table 1 we give the distance 

of a point r, 

Kozai (1 964) and King-Hele coefficients (see Appendix). The initial 
+o were taken on a sphere with the radius r points r 

in  tens of degrees f r o m  90" to -90". 
one has only to add AD to the Kozai values D (Kozai) and cor res -  

pondingly 6 to 5 in the case of the asymptote's geocentric latitude. 

on the gradient l ine f rom its asymptote for  both the 
3 4 

= a,+, varying 0' 0 
To obtain the King-Hele values, 

While D is zero at the poles, it starts increasing toward the 

middle latitudes and decreases again with + + 0. 

means constantly zero at the equator but changes in  a particular way 

due to the uneven coefficients J 2n -1 '  + = 0 will be further discussed in the last section. 

Hemisphere the gradient l ine approaches the asymptote from the south, 

while the opposite is t rue for  the Southern Hemisphere (see Figure 1). 

Most of the change in  D takes places within the first 10, 000-km eleva- 

tion above r 

However, D is by no 

This transitional stage near 

In the Northern 

- a and tends to zero with r + 00. 0 -  

The difference between the D (Kozai) and D(King-Hele) is 

hardly noticeable and significant only in  lower elevations o r  near the 

equator. W e  see,  however, that the Southern Hemisphere shows in 

3The Kozai coefficients a r e  taken f rom Kozai (1 964). Throughout this 
paper "Kozai" refers  to this paper. 

4The King-Hele coefficients a r e  taken f r o m  King-Hele and Cook (1965) 
and King-Hele, Cook, and Scott (1965). 
Hele" re fers  to both these papers. 

Throughout this paper "King- 
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Figure 1.  Shape of the gradient line. 
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both a stronger curved gradient line between the poles and 19 I - 30" 
than the Northern Hemisphere. F rom 1 + 1  - 20" on, this changes toward 

the equator, where D becomes la rger  a t  the Northern Hemisphere com- 

pared to D a t  the Southern Hemisphere. 

function of the geocentric latitude +, we obtain a sinusoidal-like curve 

with maxima at  the middle latitudes and minima at the poles and near  

the equator. 

earth 's  surface to 0. 3 km at  100,000-km elevation and to 0 km at 

H - m .  

If we plot the distance D a s  a 

The amplitude decreases hereby from - 5.1 km at  the 

A further insight into the straightness of a gradient line can be 

obtained i f  we compare i ts  length up to 00 with the corresponding pro- 

jection on its asymptote. 

curve points Q l ( r l , + l ) ,  Q2(r2,+2)  of the gradient line 

Starting f rom the arc  length s between two 12 

12 S 

1 r 

we obtain the projection on its asymptote 

- - - 
s 12 = r2 cos ( +  - + 2 )  - r l  cos (9  - 9,) , 

and the difference& for  Q, on r, = a, and Q on r2 - 00, 2 

As = l im  (s12 - S12) . 
rl=a 
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Without going further into details, Figure 2 shows the values for A s  

a s  a function of 4 .  As expected, we get analogous resul ts  to  D,  

namely, zero values at the poles (where the gradient line is a straight 

line) that increase to their maxima of - 0. 7m in middle latitudes and 

drop to very small values at  o r  near  the equator. Actually the main 

contribution in As comes again from the section within 10 ,  000-km ele- 

vation above the ear th 's  surface, while for higher elevations s - s 

tends quickly toward zero a s  can be easily seen from equation (12) .  

- 

a6 

0.) 

0.2 

LATITUDE lyl 

Figure 2. Difference between the total length of the gradient line and 
its projection on i ts  asymptote. 
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2. DIRECTION FIELD AND CURVATURE 

i -  

Equation (1) gives the direction of the tangent in each point of the 

gradient line. 

vector leads to the angle 

Intersecting it with the corresponding geocentric radius 

1 

r lg rad  Ul 
IJ = a rc  sin 

which represents the directional field of the differential equation ( 1 )  in  

a spherical coordinate system (KShnlein, 1966). In Table 2 the 

u (Kozai) a r e  directly given, while the v (King-Hele) follow again 

by adding Au to v(Kozai). 

geocentric latitude, and hence the values u do not lie on the same gra- 

dient line. 

The different elevations H refer to the same 

The pattern of the numerical results is unchanged from the pre-  

vious ones: zeros at the poles, maxima in middle latitudes, and minima 

around the equator. 

+ = 0, where the tangent is perpendicular to the revolution axis. 

Kozai's coefficients the curve moves a t  first slightly southward and 

approaches afterward asymptotically the equator 4, = 0, while fo r  the 

King-Hele coefficients the curve drops down asymptotically right from 

the be ginning. 

Figure 3 shows the points relative to the equator 

For  
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The variation of the directional field leads to the curvature of the 

gradient lines. Differentiating equation (1) with respect to s, one gets 

the radius of curvature 

1 
P =  , 9 

a s  shown in Table 3 for elevations up to  100,  000 km. 

interest  is the a rea  around the equator. 

ture,  computed from the King-Hele coefficients, increases steadily 

Of particular 

While the radius of the curva- 

- 1 i -  
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with higher elevations, the radius p (Kozai) increases a t  f i rs t ,  

then decreases  at around 1,000 km, then s tar ts  increasing again (p is 

bigger at 1, 000 k m  than p at sea level, however smaller  than p at 

100 km elevation). This behavior of the gradient line near 4 = 0 is due 

to the position of its inflection points (where p = 00) a s  shown in Figure 

4 and discussed below. 
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- I O 0 0 0  

-20000 

-30000 

I I I 

/ 
I 
I 
I 
I 
I- - KOZAI 

KING - HELE ---- 

- 
I I 1 

0 10000 20000 30000 Ckml 
HEIGHT ABOVE THE EARTH'S SURFACE 

Figure 4. Curve of inflection. 



3. BEHAVIOR OF THE GRADIENT LINE AROUND THE EQUATOR 

The uneven harmonic coefficients of the ear th ' s  gravitational field 

cause a certain disturbance in the run of the gradient line near  the 

equator. 

lines a re  bent away from the poles (at the poles they coincide with the 

revolution axis x ) and approximate smoothly their asymptotes with 

higher elevations, this behavior changes definitely during the transition 

stage near c+ = 0. 

the equation 

While in the Northern and Southern Hemispheres the gradient 

3 

Here the curves have points of inflection satisfying 

- - - - = o  d2x3 d2x1 dx3 
1 ds2 dx 

, 
ds 

which is plotted in Figure 4 for both the harmonic coefficients. While 

Kozai's J produce in general two points of inflection in the considered 

area,  the King-Hele harmonics lead to only one inflection point pe r  

gradient line, however over a wider range. 

n 

In Figure 1 we show schematically the shape of the gradient lines 

relative to their asymptotes. 

which the asymptote i s  approached at infinity. 

have only one further point where a change in the approach takes place: 

The equatorial point a t  infinity. 

tic approach of the gradient line and the curve of inflection. 

The arrows point out the directions f rom 

Except at the poles we 

This is due to the combined asympto- 
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The width of the transition stage around the equator amounts in 

Kozai's and King-Hele's cases  to - 15,000 m and 30, 000 m, respectively, 

along r = a. 

lates he re  relative to its asymptote before it assumes the monotone 

approach typical outside of this transition zone. 

As shown in Figure 1 the gradient line bends and oscil- 

Perhaps one point needs some additional explanation, namely 

where the initial point Q, (on r 

F r o m  the following expression we find its geocentric latitude (p = 9,: 
= a) falls together with i t s  asymptote. 0 

n=2 

with r 

set of harmonic coefficients we get: 

= a satisfying equation (9) both at r = a and r --t m. For  Kozai's 0 

+o = -2'29!'7 (or -4631 m southward of the equator along r =  a), 

and analogously for  King-Hele's set: 

+o = -2'56!'8 (or -5469 m southward of the equator along r = a). 
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APPENDIX 

CONSTANTS AND COEFFICIENTS USED 

a = 6 378 165 m, , earth 's  equatorial radius. 
GM = 3. 986 032 X lo2' cm 3 sec -2 , gravitational constant x mass  of 

the earth. 

J2 

J3 

J4 
J5 

J7 

J9 
J1 0 

J1 1 

Jl 2 

J6 

J8 

J1 3 

J1 4 

Harmonic Coefficients 

KOZAI KING-HELE 

1082.645 x 1082.64 x 
-2.546 x -2. 56 x 
-1.649 x -1. 52 x 
-0.210 x -0. 1 5  x 
0.646 x 0 .57  x 

-0.333 x - 0 . 4 4  x 
-0.270 x 0 . 4 4 x  

-0.053 x l o e 6  0 .12  x 
-0.054 x 
0. 302 x l o e 6  

-0.357 x 
- 0 . 1 1 4 ~  

0. 179 x 

I A- 1 



NOTICE 

This se r ies  of Special Reports was instituted under the supervision 
of D r .  F. L. Wnipple, Director of the Astrophysical Observatory of the 
Smithsonian Institution, shortly after the launching of the first artificial 
earth satellite on October 4, 1957. Contributions come from the Staff 
of the Observatory. 

First issued to ensure the immediate dissemination of data for  satel-  
lite tracking, the reports have continuedto provide a rapid distribution 
of catalogs of satellite observations, orbital information, and prelimi- 
nary results of data analyses pr ior  to formal publication in the appro- 
priate journals. The Reports a r e  also used extensively for the rapid 
publication of preliminary or  special results in other fields of as t ro-  
physics - 

The Reports a r e  regularly distribcted to all institutions partici- 
pating in the U. S. space research program and to  individual scientists 
who request them from the Publications Division, Distribution Section, 
Smithsonian Astrophysical Observatory, Cambridge, Massachusetts 
O t i  38. 


